
Efficient Jitter Analysis
for Spacecraft

Peiman G. Maghami
NASA Langley Research Center

Mail Stop 161
Hampton, Virginia 23681–0001

Efficient Jitter Analysis for Spacecraft

Peiman G. Maghami

NASA Langley Research Center
Mail Stop 161

Hampton, Virginia 23681–0001

Introduction

Typically in space missions, the science instruments require a specific degree of pointing

accuracy as well as dynamical quietness. This dynamical quietness, which is needed to allow

the instruments to make measurements (remote sensing applications) or perform other functions,

is usually characterized in terms of jitter and stability specifications1–2. In order to insure that

the spacecraft meets the requirements of its instruments, several jitter analyses are performed

throughout the design phase of the spacecraft and beyond as the models of the spacecraft,

its components, and disturbances mature. Each such analysis involves the simulation of the

spacecraft and instrument dynamical response to all known disturbance scenarios, followed by

the computation of jitter values for each instrument based on the specified jitter time windows1–2.

The direct approach for computing jitter values by sweeping maxima and minima throughout

the time history may be costly in the computational sense as the size and number of the time

histories involved could be quite large. Keeping in mind that typical spacecraft simulation time

histories may easily involve hundreds of thousands or millions of points, it is imperative that

a jitter analysis algorithm be developed which is more efficient than the direct approach. This

paper presents a vectorized algorithm for efficient computation of spacecraft jitter values. The

algorithm identifies the extreme points in the time history, which are the points that may dominate

the jitter values depending on the location of the jitter window along the time history. The span

of influence of each extremum is then computed by the algorithm and used in an efficient and

vectorized fashion to obtain the jitter values. The algorithm deals with the multiple jitter windows

2

sequentially, first computing jitter values for the smallest time window, then looping over the

remaining time windows until all jitter values are computed. A numerical example is carried out

to demonstrate the efficiency and feasibility of the proposed jitter analysis technique.

Problem Formulation

Let y(t) represent the time history of the spacecraft response at a specified location on the

spacecraft due to some disturbances. Assumey hasn elements corresponding to equally stepped

time values with a time increment ofT . Furthermore, assume that jitter values are desired for

several jitter time windows represented by the elements oftj, where tj(i) < tj(i+ 1); i =

1; 2; . . . ;m, with m denoting the number of jitter time windows intj.

Definition: The jitter value for the time windowtj(i) is defined as maximum peak to peak

excursions of the spacecraft output response, within a time window of sizetj(i) seconds, over

all possible positions of such window in the response time history. Reference 3 provides a

complete definition of jitter.

Jitter value is a measure of the level of spacecraft motion in on-orbit conditions, as well as, to

some degree, the frequency content of such motion, depending on the size of the jitter window.

The direct approach for computing jitter would involve performingn � k + 1 maximum and

minimum operations on vectors of sizek, wherek, which denotes the number of points in a

given jitter window, is given by

k = fixftj(i)=Tg+ 1 (1)

The direct approach may be computationally acceptable if the jitter window is very small (k is

near 1) or very large (k is nearn). However, it is quite inefficient for most realistic problems

where the size of the jitter window is not at either extreme and the size of the time history

can be in the hundreds of thousands or millions. An efficient algorithm for the computation

of jitter/stability has been developed. This algorithm is based on vector operations in order to

3

achieve a drastic speed up of the computational time over the direct approach. The algorithm

starts with some preprocessing of the time history data and then loops through the requested

jitter windows, starting from the smallest. The algorithm is described in the following sections.

It should be noted that most of the calculations in the algorithm can be carried out by vector

arithmetic operations which can be executed more rapidly in an array processing language such as

MATLAB 4 or on a vector or parallel processing computer than by executing a loop performing

scalar calculations.

Step 1: Identification of Extrema

In the first step, the extrema in the entire time history are identified. These include maxima,

minima, and level response points. The motivation behind this is that for any given jitter window

position along the time history, the jitter value is dominated by either extrema (maxima, minima,

or level response points) in the window, if they are present, and/or by the response at the end

points of the window. To identify the extrema in the time history, compute the first difference

vector of the time history arrayy

y1 = y(2 : n)� y(1 : n� 1) (2)

wherey(2 : n), for example, defines a vector formed from the elements 2 throughn of y. Now,

compute the sign difference vector for the first difference vectory1:

s1 = sgn(y1(2 : n� 1))� sgn(y1(1 : n� 2)) (3)

The locations associated with the internal maxima may be determined as

l
max

= fi+ 1js1(i) = �1 or � 2g (4)

Here, ones are added to the indices in order to identify points in the original time history and

not the sign difference history. Similarly, the locations associated with the minima may be

4

determined as

lmin = fi+ 1js1(i) = 1 or 2g (5)

Let ymax andymin represent the identified maxima and minima in the time history, corresponding

to locations in vectorslmax and lmin, respectively. It is assumed that the elements of vectors

lmax and lmin are in ascending order. This comprises the necessary preprocessing of the time

history data which must be performed at the beginning of the procedure. The remaining steps

in the procedure are applied sequentially for each jitter time window, starting from the smallest.

Step 2: Reduction of Extrema

Not all extrema contribute to the computation of jitter value for a given time window. For

example, a maximum that is surrounded by larger maxima on the left and the right would not

contribute to the jitter value if the distance, in time, between the surrounding maxima is not

greater than the given time window. Similar argument also applies to the minima, with the

exception that the surrounding minima should be smaller.

The insignificant maxima are removed from the set of maxima through a sequential pro-

cedure. At each iteration, first, those maxima which are surrounded on the left and right by

maxima that are withink time points of each other are identified. Here,k is the number of data

points in the time window defined in Eq. (1). The location of these maxima are obtained from

p = fijlmax(i+ 1)� lmax(i� 1) < kg (6)

Then, those maxima inymax indexed by elements ofp which are smaller than their immediate

surrounding maxima are deemed as insignificant to jitter computations and removed from the

set of maxima. The location of those maxima are identified as

lns = fi 2 pjymax(i+ 1)� ymax(i) � 0 &ymax(i� 1)� ymax(i) � 0 g (7)

5

These insignificant maxima are then removed from the current set of significant maxima,

represented by the location arraylmax and the value arrayymax, and the current set is updated:

lmax fi 2 lmaxji 62 lnsg (8)

ymax ymax(lmax) (9)

This sequential procedure is continued until either all insignificant maxima are removed or

the estimated processing time to remove additional maxima becomes larger than the estimated

computational savings realized from removing additional insignificant maxima. One possible

termination criterion may be to stop the process when the percent reduction in the size of the

location arraylmax drops below a user-defined threshold value. The set of minima may be

similarly reduced, with the exception that instead of Eq. (7) one has

lns = fi 2 pjymin(i+ 1)� ymin(i) � 0 &ymin(i� 1)� ymin(i) � 0 g (10)

Note that the location and value arrays associated with the minima are denoted bylmin andymin.

Step 3: Span of Influence of Extrema

At this point, the span of influence of the significant extrema points, in so far as affecting

jitter values, is evaluated. The following procedure is used for the maxima.

a. Compute the first difference vector,yd:

yd = ymax(2 : nmax)� ymax(1 : nmax � 1) (11)

wherenmax denotes the size of the vectorymax.

b. Divide the maxima in two groups, those that are smaller than or equal to their preceding

maximum and those that are not. The location arrays for these groups are given by

il = fi+ 1jyd(i) � 0g (12)

iu = fi+ 1jyd(i) > 0g (13)

6

c. Initialize a vector representing the span of influence of the maxima on the right from the

first time step to stepn � k + 1

su = minflmax; n� k + 1g (14)

Here, themin or max operators are element by element operators, such that their output

would be a vector if one or both of their arguments are vectors.

d. Initialize a vector representing the span of influence of the maxima on the left from the first

time step to stepn � k + 1

sl = maxflmax � (k � 1); 1g (15)

e. In order to refine the span of influence of the maxima, two situations are considered:

i. If a maximum is larger than its preceding maximum, then it may effect the span of

influence, on the right, of the preceding maximum depending on the vicinity of the

maximum and the size of the jitter window. This possible influence is incorporated by

adjusting the arraysu as

su

�
iu � Î

�
 min

n
maxflmax(iu)� k; 1g; su

�
iu � Î

�o
(16)

where Î is a vector of ones with appropriate dimensions.

ii. If a maximum is smaller than or equal to its preceding maximum, then its span of

influence, on the left, may be affected by the preceding maximum depending on the

vicinity of the maximum and the size of the jitter window. This possible influence is

incorporated by adjusting the arraysl as

sl(il) max
n
min

n
lmax

�
il � Î

�
+ Î; n� k + 1

o
; sl(il)

o
(17)

7

f. Sort the maxima in an ascending order. Let�ymax, �sland�su represent the sorted vectors.

g. Initialize yu = maxfy(1 : n � k + 1); y(k : n)g.

h. Loop through the number of maxima, each time storing the span of influence of each

maximum in appropriate elements of vectoryu as follows:

yu(j) = �ymax(i) ; �sl(i) � j � �su(i) ; i = 1; 2; . . . ; nmax

This operation was performed after sorting so that, if spans of influence overlapped, the last

element written into an overlapped location ofyu would be the dominant one.

A similar procedure is followed for the minima:

1. Compute the first difference vector,yd, of the current vector of minimaymin using Eq. (11),

with ymin replacingymax).

2. Then, divide the minima in two groups, those that are greater than or equal to their proceeding

minimum and those that are not. The location arrays for these groups are given by

il = fi+ 1jyd(i) � 0g (19)

iu = fi+ 1jyd(i) < 0g (20)

3. Follow Steps c–e described for the maxima except that all occurrences of the vectorlmax

is replaced with the vectorlmin.

4. Sort the minima in a descending order. Let�ymin, �sl and �su represent the sorted vectors.

5. Initialize yl = minfy(1 : n� k + 1); y(k : n)g.

6. Loop through the number of minima, each time storing the span of influence of each

minimum in appropriate elements of vectoryl as follows:

yl(j) = �ymin(i) ; �sl(i) � j � �su(i) ; i = 1; 2; . . . ; nmin

8

Step 4: Computation of Jitter Value

As mentioned earlier, the jitter value for any given jitter window position along the time

history is dominated by either extrema (maxima, minima, or level response points) in the window,

if they are present, and/or by the response at the end points of the window. Now, with the span

of influence of the maxima (minima) stored in the vectoryu (yl), the jitter value for the jitter

time window tj(i) may be computed as follows

yu maxfyu;maxfy(1 : n� k + 1); y(k : n)gg (22)

and

yl minfyl;minfy(1 : n � k + 1); y(k : n)gg (23)

Now, jitter value for the first window is simply computed as

jtr = maxfjyu � yljg (24)

If there is more than one jitter window, the procedure begins with the smallest jitter window

and computes the corresponding jitter values using the procedure outlined in the previous sections.

Then, jitter values for the next largest jitter window are calculated, starting with the step 2

(reduction of extrema) of the procedure outlined and the vectorsymax, ymin, lmax, and lmin

computed for the first jitter window (previous window). The same procedure is followed for the

subsequent jitter windows, starting each time with the information on the extrema computed for

the previous jitter window, until all jitter values are computed.

Numerical Example

In order to demonstrate the feasibility of the proposed jitter analysis algorithm it has been

applied in the computation of jitter values for the thermal infared Advanced Spaceborne Thermal

Emission and Reflection Radiometer ASTER/TIR, a science instrument on the EOS AM-1

9

spacecraft5, a NASA earth observation and remote sensing mission. A closed-loop simulation

of the spacecraft was performed with an instrument cryocooler disturbances as the excitation

source. A 300 second time history of the roll response of ASTER/TIR is presented in fig. 1.

With the sampling period at 0.001 seconds, the roll response resulted in a 300,001 element output

vector (corresponding to 300,000 time steps). Jitter values were computed for 3 windows at 0.1

sec, 1 sec and 10 sec, using the proposed vectorized approach and the direct approach. Both

techniques provided jitter values of 0.02 arcsec, 0.09 arcsec, and 0.63 arcsec, corresponding to

the 0.1 sec, 1 sec, and 10 sec, windows, respectively. The formulations were implemented in

the MATLAB 5 computational environment. Both, MATLAB script language implementation,

which is amenable to vector operations, and the C-based compiler optimized implementation,

which is optimal for looping, vector and scalar operations were used. The timing results are

presented in the table. It is noted that the times reported for each jitter window is based on a

jitter analysis for a single time window from scratch, i.e., the longer windows do not leverage

off of the shorter windows.

10

Table 1

0.1 sec

window

(secs)

1 sec

window

(secs)

10 sec

window

(secs)

Direct algorithm (script

language)
152.8 936.1 8665.3

Vectorized algorithm

(script language)
9.5 9.9 10.4

Direct algorithm (C-based

compiler)
9.8 87.6 1066.2

Vectorized algorithm

(C-based compiler)
3.9 4.1 6.6

The feasibility and efficiency of the proposed vectorized algorithm is clearly observed from

the table. The superiority of the vectorized jitter algorithm becomes drastically profound as

the size of the jitter window increases, approaching orders of magnitude reduction in the

computational time.

Concluding Remarks

A vectorized algorithm for efficient computation of spacecraft jitter values has been pre-

sented. The algorithm identifies the extreme points in the time history, which are the points that

may dominate the jitter values depending on the location of the jitter window along the time

history. The span of influence of each extremum is then computed by the algorithm and used in

an efficient and vectorized fashion to obtain the jitter values. The algorithm is sequential, i.e., it

starts with smallest jitter window and works its way to the largest window requested. The algo-

rithm has been successfully applied to the computation of jitter values for a science instrument

on the EOS AM-1 spacecraft. The results indicate the proposed algorithm reduces the required

11

computational time by several orders of magnitude, thereby demonstrating the feasibility of the

approach,

References

1. GE Aerospace; EOS-A Pointing and Orbit Requirements (AFM T-9), NAS5–32500, August

28, 1991.

2. GE Aerospace; EOS-A Pointing and Orbit Study Update (AFM T-9), NAS5–32500, May

22, 1992.

3. Giesy, D. P., “Efficient Calculation of a Jitter/Stability Metric,” Journal of Spacecraft and

Rockets, Vol. 34, No. 4, July-August, 1997.

4. MATLAB Reference Guide-High-Performance Numeric Computation and Visualization Soft-

ware. The MathWorks, Inc., 1993.

5. Asrar, Ghassem; and Dokken, David Jon, eds.: 1993 Earth Observing System Reference

Handbook. NASA NP-202, 1993.

12

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time, Seconds

T
IR

 R
ol

l,
ar

cs
ec

13

Figure 1 Time Response for MOPITT Cryocooler Disturbance Sequence

14

